
The polyglot computer∗

Daniel Medeiros Nunes de Castro
Department of Computer Science

University of Calgary
2500 University Drive N.W.

Calgary, AB, Canada T2N 1N4
dmncastr@ucalgary.ca

TR 2013-1048-16, October 2013

Abstract

Performing security verifications on a compromised system can give
a false sense of security. If compromised, a computer system can return
false results, thus “deceiving” the verification process. Our motivation for
this work is straightforward: Computers should not be trusted, at least
not when they are attesting their own integrity.

In our project Babel, this problem is addressed by, quite literally,
thinking outside the box. Babel introduces an architecture where the
user’s computer is unable to execute any program by itself and depends on
an external entity to execute any application. Taking into consideration
the advances in computer network and cloud computing, we move the
verification process to outside the physical limits of the computer.

Babel can be mistaken for yet another instance of extant approaches.
In this paper, we revisit the Babel architecture with the twofold intention
of clarifying what Babel is and showing how Babel differs from previous
work.

1 Introduction

Popular mechanisms and methods for evaluating the integrity of a computer
system rely on the information given by the very same computer we want to
evaluate. That computer is used for both collecting information and performing
the evaluation itself.

In this project called Babel, we argue that this popular solution starts from
a false premise, i.e., we want to believe that the computer will always tell us
the truth. When, in fact, it is very likely that a compromised computer would

∗This paper was presented in the Ph.D. talks (NSPHD) of NSPW 2013.

1



User's computer

Application VM

Kernel spaceUser space Security Provider

Application VM

B
ab

el
 M

an
ag

er Translation

SecurityD
is

pa
tc

he
r

(1)

(2)

(3)

Figure 1: Babel architecture

produce a result based on false information, or that the evaluation process itself
would be directly affected or attacked.

With Babel, we address this problem by taking a rather radical approach.
The computer becomes, by itself, incapable of executing any program without
the intervention of a trusted third party. This third party will ensure that the
code is secure for execution. A relationship in which a party strongly depends on
another for any decision is known in psychology as “co-dependency” [29, p.8]. In
Babel, we introduce the idea of co-dependency as a means to computer security.

The aforementioned trusted third party, which we call a security provider,
has two main responsibilities. First, the security provider must help the com-
puter to understand and execute the program, which is initially incompatible
with the computer. Second, and maybe more important, the security provider
must also perform security checks on any and all code that will be executed,
before that code is in fact executed. That includes dynamically generated code
and even code that somehow happened to be injected into memory.

Babel was designed in the form of three elements, represented in Figure 1:
(1) a local component located in the user’s computer; (2) a remote component
located in the security provider’s environment; and (3) the communication chan-
nel used to connect the user’s computer to the security provider. The remainder
of this section will discuss the Babel architecture and each of these elements and
discuss some of the advantages and disadvantages of using Babel.

1.1 Babel architecture

The first element in the Babel architecture is the Babel client. The client ideally
consists of a specially crafted operating system that runs on the user machine.
An ideal operating system would have a minimal trusted base. Our suggested
approach consists of a micro-kernel based operating system, such as Exoker-
nel [12]. A small kernel suggests that there may be less opportunities for vul-
nerabilities in the kernel code, or at least that thoroughly auditing the code may
be possible.

An alternative and non-ideal implementation of Babel would consist of hav-
ing the Babel client as a module in a stock operating system. (In fact, in the
current stage of our work, we have chosen the latter approach for the implemen-

2



tation of a proof-of-concept.)
To implement the aforementioned co-dependency, all programs run on ap-

plication virtual machines, one VM for each program, that are incompatible to
the program itself. To actually perform the code execution, the VM needs to
communicate to a security provider in order to obtain a translated version of the
program it is executing. This translation must happen incrementally, in order
to ensure that the actual code being executed is translated, independently of
how the code is represented in the file. An incremental translation also ensures
that any code injected by an adversary also needs to be translated and, thus,
checked for malicious features prior to its execution.

The Babel Manager is the component on the client side that is responsible for
the above tasks. The Babel Manager instantiates a VM for each user application
being executed in execution, and is also responsible for the communication with
security providers.

Each instance of a VM is unique in Babel. This uniqueness lies in each VM
using a different “language”. In the context of Babel, a language is defined by
the set of characteristics that describe a VM, such as instruction set, register set
(if any registers at all), memory organization and other characteristics. With a
different VM for each process, we include program diversity as an integral part
of Babel.

However, in Babel, the importance of program diversity is not limited to
helping to enforce co-dependency; it also adds a layer of protection against
code-injection [16]. In our current proof-of-concept, described in [3], we have
used a variation of ISR [6] to provide low level diversity; our languages differ one
from another simply by the instruction set1. A random key is selected by the
security provider and sent to the client to encrypt instruction opcodes during
the VM instantiation. In order to make it harder for an attacker to recover the
key, the key is discarded from the client’s memory after creation of the VM.

By choosing a different language, or in our proof-of-concept by encrypting
the instruction set, we essentially make the program we want to execute incom-
patible with the VM that will execute it. During execution, a Babel-enabled
VM needs to send each and every instruction to a security provider. The se-
curity provider then translates the instructions to the language used by that
specific VM on the client, and returns it so the VM can execute it.

The second element of the Babel architecture is the remote component. In
the most basic implementation, this component can be implemented as a service
running on a computer in the network. As such, we refer to the remote com-
ponent as the Babel server. Some of the scenarios in which we can deploy the
Babel server are described in [3], and it includes having one client communicat-
ing with multiple servers for improved security. The Babel server itself consists
of three main components: a dispatcher, that controls the connection to the
clients and also decides what to do with each received message; a translator,
that, as the name suggests, translates the code; and a security module, that is
responsible for performing security checks.

1See Section 2.1 for a brief discussion on diversity.

3



The translator and the security module might, optionally, also perform some
modification on the code. Some of the possible modifications include code opti-
mization and the injection of security checks that might need to be performed
on the client side.

The third element is the Babel communication channel. The channel is as-
sumed to be secure, thus it should ideally implement authentication and be
encrypted to avoid eavesdropping. Our protocol includes messages for transla-
tion and also control messages that perform special operations on the client, for
example, triggering an error. A complete description of the Babel communica-
tion protocol is also given in [3].

2 Dissecting Babel

When designing Babel, we based some of the design decisions on other exist-
ing projects. However, rather than making Babel a different instance of such
projects or ideas, we used them as building blocks. Nevertheless, such building
blocks should not be confused with the final product that is Babel, as a single
brick or even any room cannot be mistaken by the house to which they belong.

In this section, we dissect Babel and discuss each of those parts. Particularly,
we discuss the aspects of diversity and virtualization on the client side; and the
code interpretation.

2.1 Diversity and ISR

As we previously discussed, program diversity plays an important role in Babel.
First introduced2 by Forrest et al. [13], the basic idea of program diversity for
security is that having different versions of the same program results in a more
robust overall system. Even if a program contains some vulnerability, a single
exploit would not affect all the different versions of that program.

Yet, program diversity is used in Babel mainly as a tool to enforce co-
dependency and not as a final goal. It is, after all, the co-dependency that
drives Babel to perform security checks completely isolated from the suspicious
program.

Instruction set randomization (ISR) [16] is an approach for program diver-
sity that focuses on defending against code injection. ISR consists of having
a different instruction set for each instance of a program. This is achieved by
randomly choosing a key and encrypting the instruction set of a program in
memory.

In our proof-of-concept, as we mentioned in Section 1.1, we have imple-
mented program diversity by performing ISR for each application in execution.

While we currently focus on instruction level diversity, ISR is not the only
way program diversity can be implemented in Babel. We envision having com-
pletely different languages. Instead of simply encrypting or encoding the in-

2Forrest et al. in fact acknowledges that diversity itself was first suggested by [11]. However,
Forrest et al. introduced practical approaches for program diversity.

4



struction set, we could have different instruction sets per program, different
memory organization approaches, even different types of virtual machines to
execute a program (e.g., stack- versus register-based machines).

2.2 Virtualization

There are usually two classic forms of virtualization for computers: system
and application3 virtual machines [27]. A system VM consists of virtualizing
an entire computer, thus requiring even the installation of an entire operating
system. Examples of system VMs include VMWare4 and Xen [5]. An application
VM, on the other hand, consists of only a layer of abstraction between the
program and the operating system. An application VM is usually instantiated
for each program in execution and the VM itself is considered a process in the
operating system. Examples of application VMs include the Java VM [20] and
Inferno’s Dis [24].

The use of virtualization techniques in Babel aims particularly at enabling
program diversity. However, the virtualization obviously brings other advan-
tages, such as isolation between programs.

An alternative approach to Babel that has been often suggested consists of
having our security provider running locally, in a different virtual machine, in-
stead of a different and remotely located computer. This would certainly reduce
the latency and the security checks would still be performed in a somewhat dif-
ferent machine, thus isolating program execution from security checks. In fact,
there has been work that attempt to achieve a similar result (e.g., [10,14]). How-
ever, it is not really clear whether VMs are really isolated from one another.
Despite that, the massive movement towards using VMs for security have driven
VMs to become increasingly complex, more so than necessary, which inevitably
increases the risk of exploitable vulnerabilities into the system [7].

The direction Babel goes is exactly the opposite. As we mentioned in Sec-
tion 1, our goal is to reduce the complexity of the software on the client side,
ideally by reducing the trusted code base on the client side.

Additionally, having both client and server in the same machine, isolated
by different system VMs, requires a great deal of computer power on the user
machine. Some complex code transformation might not be possible if we con-
sider a more limited device. In contrast, having code transformations happening
in the cloud gives the opportunity to augment the user’s device computing re-
sources, such as CloneCloud [28]. In Babel, however, the augmentation might
be limited by the amount of data that is leaked to the security provider, whereas
CloneCloud requires that a copy of the device’s data exists in the cloud.

3Smith and Nair actually use the term “process VM” instead of “application VM” in [27].
Those terms are actually considered synonymous, but we personally prefer and use the latter.

4An historical account of the beginning of VMWare in 1999, including their technical
challenges, can be found in [8].

5



mov eax, 0xAA
push eax
mov ebx, 0x42
xor eax, eax
add eax, ebx
pop ebx

mov eax, 0x42
mov ebx, 0xAA

Server-side processing
and post-analysis

Original code Translated code

Figure 2: Example of optimization by code processing on the server side.

2.3 Code interpretation

Code interpretation in Babel happens within the application VMs. But, instead
of a simple and direct interpretation, the code is first sent to the security provider
for translation. Only after the translation is received, the VM can interpret the
code.

Essentially, in Babel we have a form of JIT compilation that is performed
off-site. The original code in the client computer (despite what format it
is represented in) can be loosely considered “the source code”, that is com-
piled/translated on demand by the server and subsequently executed by the
client.

Of course, one could argue that the translation could occur locally instead
of remotely, in order to improve performance. However, this would defeat the
whole purpose of translation, which is ensuring that each instruction, or the code
execution in general, is analysed by a third party before it can be executed.

Instead, we envision that some (minor) processing might occur on the server
side. That would occur, of course, under rather limited conditions. First, ei-
ther data from the user might not be necessary for the computation or the user
must agree that that portion of the data can be sent to the server. An exam-
ple of the former is a series of operations on constants or on direct memory
addresses, as in our (rather contrived) example in Figure 2. Notice that such
optimizations, although they might be limited to particular situations, could
avoid unnecessary communication. These optimizations might also result in
generating a normalized version of the code, for example by removing sequences
of redundant instructions or even sequences of NOOP, which could even assist
the detection mechanism to identify obfuscated malicious code. And the second
condition, suggested in [9], is that the time spent performing the computation
on the server side and then sending the optimized version must compensate the
time of directly sending the non-optimized version of the code to the client.

Also, we must emphasize that our “remote compiler” has also the task of
dynamically performing a series of security checks on the code. Those checks
might even result in other transformations happening to the code. For example,
a sequence of instructions can be dynamically altered to include protection
against buffer overflow on an otherwise vulnerable code.

6



3 Other remote detection

In this section, we initially describe some work that has some similarities to
Babel or that are otherwise related in some sense. We then compare them to
Babel.

CloudAV takes anti-virus to the cloud [21, 22]. Their approach essentially
consists of sending files to a remote server, where the file is checked using a set
of different detection engines5, i.e., different anti-malware products. There are
two main insights from CloudAV that inspired our work: the first is that by
moving the detection to the cloud, any infection on the client machine will not
affect the detection; and the second is that CloudAV uses multiple mechanisms
for detection, thus likely covering a wider spectrum of potential threats.

While CloudAV is an inspiration for Babel, the goals and approaches are
quite different. As Babel, CloudAV also is composed of a client and a network
service component. CloudAV’s client component is described as a “lightweight
cross-platform host agent” that selects and sends files, usually executables and
documents, to the network service. Babel’s client, on the other hand, is the
actual operating system on the user’s machine, or a module in that operating
system’s kernel, thus Babel is much more integrated into the system. Clou-
dAV’s network service is responsible for running a series of detection engines
and checking whether the file is infected with some malware, whereas Babel’s
network service dynamically analyses the actual code executing on the user’s
computer.

One of the drawbacks of the CloudAV approach is that only files are sent to
be tested by the service. There is no assurance that the file was not executed
yet, so CloudAV might not avoid a prior infection. CloudAV does not deal
with dynamic inputs either. Some of the detection engines include a sandbox
for executing the suspicious program, in which case a dynamic detection is
performed, but it is still somewhat independent of what can actually happen on
the user’s side. An example is a long running network service (e.g., an HTTP
server) on the user’s machine. CloudAV would not be able to detect or deal
with a malicious input.

By contrast, Babel aims to detect and avoid malicious activities during code
execution. Even though the Babel security provider, which runs the servers,
might not have direct access to the actual input, the sequence of instructions
or even a sequence of system calls might reveal a malicious activity taking
place [15]. Nevertheless, we have also considered some alternative approaches,
such as requesting a hash of the input, and check that hash against a database
of malicious inputs, or performing some checks on the user’s machine, by em-
bedding tests in the code to be executed.

Paranoid Android [25] is a solution especially focused on smartphones. The
Paranoid Android (PA) architecture consists of a tracer on the user side, i.e., on
the user’s smartphone, and a replayer located in the cloud. The tracer collects
information about operations that are performed on the user’s smartphone and

5In the experiments described in [21], the authors used a total of 12 detection engines.

7



sends that information to the replayer. The replayer, as the name suggests,
replays the sequence of operations while it performs security checks to identify
whether that sequence is malicious.

To perform properly, the replayer needs access to the user’s data, all of it.
PA, therefore, requires that an entire copy of the user’s data is sent to the
cloud, or, specifically, to the server that runs the detection mechanism. While
this need for copy is featured as “transparent data backup”, therein lies an
important difference from Babel: in our approach, the user is the owner of the
information, and it is under the user’s discretion how much information is going
to be leaked to the cloud.

Another important difference is that PA consists essentially of a post-mortem
detection. Whenever a malicious activity is detected by the system, it has
happened already. At that point, the authors suggest that the user be warned
and that a recovery procedure be started. Such recovery process, however, is
not trivial and not really discussed by the authors.

Both CloudAV and PA, and also Babel, are based on a client-server archi-
tecture. An interesting point is that CloudAV and PA architectures can be
implemented using the Babel infrastructure, with the advantage that we could
add earlier detection to PA. The obvious disadvantage of implementing such
systems over Babel is that we would lose the control of the user’s data. As in
the original PA implementation, we would need to send all of the user’s data to
the cloud.

4 Babel and remote computing

Remote computing refers to the ability of using a remote computer to perform
data processing on behalf of the user. Remote computing has taken different
forms during the evolution of computers: from dumb terminals, which were sim-
ply an interface to a remote central computer, to advanced document processing
(such as text, spreadsheets) in the cloud. Two forms of remote computing are
particularly important when discussing Babel.

The first form of remote computing we will discuss is called thin client com-
puting (TCC). Some authors (e.g., [4,18]) have described TCC as a client-server
architecture where a remote display protocol is used for communication. The
main characteristic of a remote display protocol is that it only transmits infor-
mation about the interface, all the application logic resides on the server.

The second form of remote computing is called Software-as-a-Service (SaaS),
which is a type of cloud computing. Cloud computing, by itself, is a rather foggy
concept, with each author giving a different definition of what cloud computing
means, as captured by Weiss’ description of cloud computing:

“(. . . ) like the clouds themselves, ‘cloud computing’ can take on
different shapes depending on the viewer, and often seems a little
fuzzy at the edges.” [31]

8



SaaS consists of providing on demand access to software over the cloud.
Some of the examples of SaaS are Google Maps, Google Apps, and Apple iCloud.
Other forms of cloud computing include PaaS, IaaS and a number of other “X-
as-a-Service” [2]. However, for the purpose of this paper, we will limit the
discussion to SaaS.

Both SaaS and TCC have the same common characteristic: program execu-
tion, for its most part, does not occur on the user’s computer, but on a remote
site. That is the basic definition of remote computing. In this common char-
acteristic we can already find a fundamental difference from Babel. In Babel,
the application logic remains on the client and the actual program execution
happens on the client side. While we envision that some portions of the code
will be processed in the cloud in order to improve performance, the application
logic will still belong to the client. It is the client side that will control how the
code will be executed.

Using the traditional comparison between a program and a cooking recipe,
we can make the following analogy. With remote computing, we ask a cook to
prepare a meal for us. We might know what the ingredients are and have an
idea of how the meal is prepared, but we do not know the actual recipe and the
cook uses the ingredients that he or she has. In Babel, we have the recipe, but
we cannot understand it, maybe because it is in a foreign and strange language.
So, we ask an interpreter for some help translating. Because this interpreter
happens to know something about cooking, the interpreter also checks if we are
doing it right. However, in Babel, we use our own ingredients and do everything
ourselves.

There are more subtle, but not less important, differences between TCC,
SaaS and Babel. These differences have to do with location and ownership of
data and programs. Location indicates where data is stored and handled and
whether programs are stored and executed on the “client” or on the “server”
side of the model. We classified ownership as “user” or “provider” to indicate
who owns the data or programs. We also used “shared” to indicate a situation
where the limits for location or ownership are somewhat unclear.

Starting from a very basic example: In a local environment, without network
access, it is clear that data and programs belong to the user and both data and
program are located on the client side, i.e., the user’s computer.

In the case of TCC, what we generally see is that the provider (usually a
company) allows the user to access the provider’s computer, but usually both
data and programs belong to the provider and are located remotely. In fact,
one of the appeals for a company to adopt thin clients is to keep its data safe
when the data needs to be accessed off-site [17].

With SaaS, the data usually belongs to the user (e.g., documents, photos),
but it is also usually located remotely. Programs are obviously located remotely,
but their ownership is not really well defined. Programs either belong to the
provider or they are “leased” in some form to the user. In fact, Armbrust
et al. [1] adds, to the definition of SaaS, programs that run locally but with
licensing being enforced remotely.

Babel stands apart from these two. In the Babel model, data and programs

9



Table 1: Differentiating Babel from remote computing.

Type
Data Program

Ownership Location Ownership Location

Local User Client User Client
TCC Provider Server Provider Server
SaaS User Server Shared Shared
Babel User Shared User Shared

belong to the user. They are installed and stored locally (unless the user ex-
plicitly wants to store data remotely) just as in a local environment. However,
as the server’s role is to assist the local execution, some parts of the code need
to be sent to the server. Portions of data might also be eventually sent, either
when necessary in the detection process or for improving the performance of
the system, as discussed in Section 2.3. Because data and programs might be
shared, it is safer to consider that both data and programs have their location
divided between the client and the server side of the architecture.

Table 1 summarizes how location and, more importantly, ownership can be
used to differentiate Babel from remote computing. It is clear that, despite being
based on a network service, Babel’s architecture is closer to a local environment
when we consider the ownership of programs and of the user’s data.

5 The new world of Babel

Babel presents an increased protection against execution of malicious code. This
protection comes in two forms. First, because of the embedded program diver-
sity, an attacker is required to “guess” or somehow identify which language is
used by that particular instance of program that is under attack. Second, even if
the attacker succeeds in identifying the language and injecting meaningful code
into the computer’s memory, the code also needs to be checked and attested by
the security provider, prior to its execution.

Another important aspect of Babel is its focus on having a very small trusted
code base. Our ideal deployment consists of a microkernel architecture. This
means that only a few components need to be actually trusted, compared to a
monolithic kernel. This small number of components would result in a signifi-
cantly smaller code base that would need to be audited, thus making feasible a
complete audit of the code. The ultimate consequence is that we could, essen-
tially, have an operating system kernel that, after auditing, would not need any
updates. And with Babel’s ability to perform code transformations, we could
have security fixes for any other components of the operating system (and other
programs) being implemented on-the-fly, protecting the user even more.

However, the enemy is usually persistent. Babel’s protection against attacks
to the client would actually force attackers to shift their attention from the users
to the communication channel and/or to the security provider’s servers.

10



The need for communication becomes an obvious single point of failure in
Babel, which makes the communication channel the most obvious target for an
attacker. An attacker might want either to disrupt the communication (causing
a denial-of-service), or be perceived as the security provider: spoofing and man-
in-the-middle attacks would likely be some of the options. In fact, mitigating
attacks to the communication channel is also an open problem as new forms of
attacks emerge constantly.

We believe that, for the moment, the conventional mechanisms of encryp-
tion and authentication are still the best candidates to thwart attacks to the
communication channel in Babel as well. The caveats are the extra overhead to
an already heavy load, and the need for an infrastructure of trust in order to
support authentication. But trust is already an intrinsic part of Babel and is re-
quired for the establishment of security providers, thus the authentication might
actually come more naturally than in the more general case of the internet.

A secondary target would the security providers themselves. However, that
means a very high profile target. It would not only require a very talented
attacker (or team of attackers), but also much more resources than is necessary
nowadays to attack generic internet users. The game will become harder for
the attackers. And it is the security provider’s responsibility to keep a well
maintained infrastructure to support its users.

It is clear that Babel’s co-dependency requires a great deal of communica-
tion, especially for translating program instructions. This communication, and
more particularly the latency imposed by the network environment, might make
execution too slow and unbearable.

Therefore, a full adoption of Babel presupposes a world where latency does
not exist or it is minimal. While in the last 20 years we have seen over 1000%
improvement in terms of network bandwidth [23], latency is still a problem to
be solved [26].

But we cannot simply wait for a solution. So, in order to make Babel usable
in the near future, even while that extremely low latency is still not avail-
able, we have been working on several approaches to mitigate the problem. We
have already reduced significantly the number of round-trips by implementing
a small cache of translated instructions and by sending blocks of instructions
for translation [3]. Further work will also explore branch prediction [19] so we
can anticipate instructions that might need translation shortly.

Also, while Babel is definitely not SaaS, we want to leverage the benefits
from cloud computing. Cloud computing can contribute to reduce latency in
at least two more ways [30, p. 266-7]. First, by leveraging its geographically
distributed aspect, which increases the chances of bringing the service closer to
the user, no matter where in the world the user is. Second, by using its inherent
parallelism, which can potentially improves response time by dividing complex
tasks such as code optimization and the security verification.

Another natural point to be considered is user’s privacy. While we attempt to
avoid or minimize data leakage, the fact that all the computation is overseen by
an external entity certainly raises concern. In [3], we discuss some possible ways
to mitigate the loss of privacy. Nevertheless, we admit that a more thorough

11



investigation on how Babel impacts privacy and on how to deal with that impact
is still necessary. However, we believe that the existence of a fully developed
Babel system would be required, or at least desired, to provide grounds for such
investigation.

Babel, thus, presents a different and interesting approach for computer se-
curity; an approach with great potential, in which still unknown defense mech-
anisms (and, of course, new attack methods) wait to be unveiled.

6 Acknowledgments

The author’s research is supported in part by a grant from the Natural Sciences
and Engineering Research Council of Canada via ISSNet, the Internetworked
Systems Security Network. Thanks to my supervisor John Aycock, and to
Michael Locasto and Chris Jarabek, also co-authors of [3], for helpful discus-
sions, ideas and suggestions. Also, I would like to thank the all the attendees
of NSPW 2013, for their thoughtful suggestions and feedback.

References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of
cloud computing. Communications of the ACM, 53(4):50–58, 2010.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the
clouds: A berkeley view of cloud computing. Technical Report UCB/EECS-
2009-28, EECS Department, University of California, Berkeley, February
2009.

[3] J. Aycock, D. M. N. Nunes de Castro, M. E. Locasto, and C. Jarabek.
Babel: a secure computer is a polyglot. In Proceedings of the 2012 ACM
Workshop on Cloud Computing Security Workshop, CCSW ’12, pages 43–
54, New York, NY, USA, 2012. ACM.

[4] R. A. Baratto, L. N. Kim, and J. Nieh. THINC: a virtual display architec-
ture for thin-client computing. In Proceedings of the 20th ACM symposium
on Operating systems principles, SOSP ’05, pages 277–290, New York, NY,
USA, 2005. ACM.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In
Proceedings of the 19th ACM Symposium on Operating Systems Principles,
SOSP ’03, pages 164–177, New York, NY, USA, 2003. ACM.

[6] S. W. Boyd, G. S. Kc, M. E. Locasto, A. D. Keromytis, and V. Prevelakis.
On the general applicability of instruction-set randomization. IEEE Trans-
actions on Dependable and Secure Computing, 7(3):255–270, July 2010.

12



[7] S. Bratus, M. E. Locasto, A. Ramaswamy, and S. W. Smith. VM-based
security overkill: a lament for applied systems security research. In Pro-
ceedings of the 2010 New Security Paradigms Workshop, NSPW ’10, pages
51–60, New York, NY, USA, 2010. ACM.

[8] E. Bugnion, S. Devine, M. Rosenblum, J. Sugerman, and E. Y. Wang.
Bringing Virtualization to the x86 Architecture with the Original VMware
Workstation. ACM Transactions on Computer Systems, 30(4):12:1–12:51,
2012.

[9] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. CloneCloud:
elastic execution between mobile device and cloud. In Proceedings of the
6th ACM European conference on Computer systems, EuroSys ’11, pages
301–314, New York, NY, USA, 2011. ACM.

[10] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen. ReVirt:
enabling intrusion analysis through virtual-machine logging and replay. In
Proceedings of the 5th Symposium on Operating Systems Design and Im-
plementation, OSDI ’02, pages 211–224, New York, NY, USA, 2002. ACM.

[11] M. W. Eichin and J. A. Rochlis. With microscope and tweezers: an analysis
of the internet virus of november 1988. In Security and Privacy, 1989.
Proceedings., 1989 IEEE Symposium on, pages 326–343, May 1989.

[12] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exokernel: an operating
system architecture for application-level resource management. In Proceed-
ings of the 15th ACM Symposium on Operating Systems Principles, SOSP
’95, pages 251–266, New York, NY, USA, 1995. ACM.

[13] S. Forrest, A. Somayaji, and D. Ackley. Building diverse computer systems.
In Proceedings of the 6th Workshop on Hot Topics in Operating Systems,
HOTOS ’97, pages 67–, Washington, DC, USA, 1997. IEEE Computer
Society.

[14] T. Garfinkel and M. Rosenblum. A virtual machine introspection based
architecture for intrusion detection. In Proceedings of the Network and
Distributed System Security Symposium, NDSS ’03. The Internet Society,
2003.

[15] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using
sequences of system calls. Journal of Computer Security, 6(3):151–180,
August 1998.

[16] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-injection
attacks with instruction-set randomization. In Proceedings of the 10th ACM
conference on Computer and Communications Security, CCS ’03, pages
272–280, New York, NY, USA, 2003. ACM.

[17] J. Krikke. Thin clients get second chance in emerging markets. Pervasive
Computing, 3(4):6 – 10, October–December 2004.

13



[18] A. M. Lai and J. Nieh. On the performance of wide-area thin-client comput-
ing. ACM Transactions on Computer Systems, 24(2):175–209, May 2006.

[19] J. K. F. Lee and A. J. Smith. Branch prediction strategies and branch
target buffer design. Computer, 17(1):6–22, 1984.

[20] T. Lindholm and F. Yellin. Java Virtual Machine Specification. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition,
1999.

[21] J. Oberheide, E. Cooke, and F. Jahanian. CloudAV: N-version antivirus in
the network cloud. In Proceedings of the 17th USENIX Security Sympo-
sium, pages 91–106, Berkeley, CA, USA, 2008. USENIX Association.

[22] Jn Oberheide, E. Cooke, and F. Jahanian. Rethinking antivirus: executable
analysis in the network cloud. In Proceedings of the 2nd USENIX Workshop
on Hot Topics in Security, HOTSEC ’07, pages 5:1–5:5, Berkeley, CA, USA,
2007. USENIX Association.

[23] D. A. Patterson. Latency lags bandwith. Communnications of ACM,
47(10):71–75, October 2004.

[24] R. Pike. The design of the Inferno virtual machine. http://doc.cat-v.

org/inferno/4th_edition/dis_VM_design. Last accessed: 07.Sep.2012
.

[25] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos. Paranoid An-
droid: versatile protection for smartphones. In Proceedings of the 26th
Annual Computer Security Applications Conference, ACSAC ’10, pages
347–356, New York, NY, USA, 2010. ACM.

[26] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and J. K. Ouster-
hout. It’s time for low latency. In Proceedings of the 13th USENIX confer-
ence on Hot Topics in Operating Systems, HotOS ’11, pages 11–11, Berke-
ley, CA, USA, 2011. USENIX Association.

[27] J. E. Smith and R. Nair. The architecture of virtual machines. Computer,
38(5):32–38, May 2005.

[28] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient software-
based fault isolation. In Proceedings of the 14th ACM Symposium on Oper-
ating Systems Principles, SOSP ’93, pages 203–216, New York, NY, USA,
1993. ACM.

[29] S. Wegscheider-Cruse, J.R. Cruse, and J. Cruse. Understanding Co-
Dependency. Health Communications, Inc., 1990.

[30] J. Weinman. Cloudonomics: The Business Value of Cloud Computing.
Wiley Publishing, 1st edition, 2012.

[31] A. Weiss. Computing in the clouds. netWorker, 11(4):16–25, 2007.

14


